Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 25(3): 112, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36793327

RESUMO

Dietary fat strongly influences the intestinal mucosal barrier, which protects against invading pathogenic bacteria. A high-fat diet (HFD) compromises the integrity of epithelial tight junctions (TJs) and reduces mucin production, leading to intestinal barrier disruption and metabolic endotoxemia. It has been shown that the active constituents of indigo plants can protect against intestinal inflammation; however, their protective role in HFD-induced intestinal epithelial damage remains unknown. The present study aimed to investigate the effects of Polygonum tinctorium leaf extract (indigo Ex) on HFD-induced intestinal damage in mice. Male C57BL6/J mice were fed a HFD and injected intraperitoneally with either indigo Ex or phosphate-buffered saline (PBS) for 4 weeks. The expression levels of TJ proteins, zonula occludens-1 and Claudin-1, were analyzed by immunofluorescence staining and western blotting. The colon mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-12p40, IL-10 and IL-22 were measured by reverse transcription-quantitative PCR. The results revealed that indigo Ex administration attenuated the HFD-induced shortening of the colon. Colon crypt length was shown to be significantly greater in the indigo Ex-treated group mice compared with that in the PBS-treated group mice. Moreover, indigo Ex administration increased the number of goblet cells, and ameliorated the redistribution of TJ proteins. Notably, indigo Ex significantly increased the colon mRNA expression levels of IL-10. Indigo Ex displayed little effect on the gut microbial composition of HFD-fed mice. Taken together, these results suggested that indigo Ex may protect against HFD-induced epithelial damage. The leaves of indigo plants contain promising natural therapeutic compounds that could be used to treat obesity-associated intestinal damage and metabolic inflammation.

2.
FASEB J ; 37(2): e22780, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36651716

RESUMO

Retinoic acid-inducible gene-I (RIG-I) is a cytoplasmic RNA sensor that plays an important role in innate immune responses to viral RNAs. Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is a eukaryotic initiation factor 2α (eIF2α) kinase that is initially involved in the responses of the translational machinery to dsRNA. PKR is also thought to play an essential role in antiviral innate immunity. However, the coordinated mechanisms of RIG-I and PKR that induce the expression of type I interferons (IFNs), essential cytokines involved in antiviral defense, are not completely understood. In this study, we show that PKR negatively participates in the RIG-I-mediated induction of IFN-ß expression. Stress granule (SG) formation is crucial to sequester mRNA to prevent aberrant protein synthesis by various stresses. SG formation in response to dsRNA was triggered by a PKR-mediated antiviral stress response. However, IFN-ß mRNA was not sequestered in the SGs of dsRNA-treated cells. dsRNA-induced translational silencing was thought to be PKR dependent. However, our results indicated that some proteins, including IFN-ß, were clearly translated despite PKR-mediated translational silencing. This study suggests that RIG-I responds mainly to IFN-ß expression in cells to which non-self dsRNA is introduced. In addition, PKR negatively regulates IFN-ß protein expression induced by RIG-I signaling. This may explain the essential role of PKR in fine-tuning the expression of IFN-ß in RIG-I-mediated antiviral immune responses.


Assuntos
RNA de Cadeia Dupla , eIF-2 Quinase , eIF-2 Quinase/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Transdução de Sinais/genética , Antivirais
3.
FEBS J ; 290(10): 2636-2657, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36478074

RESUMO

Transmembrane protein 72 (TMEM72) is involved in normal kidney development and tumorigenesis in renal cell carcinoma. However, the function of TMEM72 has not been experimentally examined; therefore, the role of TMEM72 is incompletely understood. In this study, we initially demonstrated that TMEM72 has four transmembrane domains (TMDs) and a long C-terminal tail. Immunofluorescence analysis showed that TMEM72 is localized on the plasma membrane but not on the outer mitochondrial membrane. Experiments performed with a series of TMEM72 deletion mutants and an evaluation of the unfolded protein response indicated that these TMDs are needed for proper protein folding or assembly. In contrast, domain-specific replacement analysis indicated the essential role of the C-terminal region of TMEM72 in protein transport. Spatial colocalization and immunoprecipitation assays showed that the proximal C-terminal region is responsible for anterograde protein transport. An amino acid sequence analysis and an immunocytochemical evaluation revealed that KRKKRKAAPEVLA, which corresponds to amino acid positions 132-144 in TMEM72, participates in efficient cellular transport. The motifs 132KRKKRK137 and 139APEVLA144 are associated with COPII and are considered to cooperate with membrane trafficking. Because efficient membrane trafficking is crucial for cells to maintain normal function, our data may contribute to elucidating the pathogenesis of membrane trafficking-associated diseases, particularly renal carcinoma and chronic kidney disease.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Membrana Celular/metabolismo
4.
Immunol Res ; 70(5): 688-697, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35666435

RESUMO

Upon viral infection, dysregulated immune responses are associated with the disease exacerbation and poor prognosis. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway are essential for the innate immune responses against invading viruses as well as for sustained activation of macrophages. Tryptanthrin, a natural alkaloid, exhibits various bioactivities, including anti-microbial and anti-inflammatory effects. The aim of this study was to elucidate the effects of tryptanthrin on toll-like receptor 3 (TLR3)-mediated STAT1 activation in macrophages in vitro. Using phorbol myristate acetate (PMA)-differentiated THP-1 cells, we analyzed the protein level of phosphorylated-STAT1 (p-STAT1) upon stimulation with polyinosinic-polycytidylic acid (poly IC), a well-known TLR3 ligand, with and without tryptanthrin. We found that tryptanthrin decreased the protein level of p-STAT1 in a concentration-dependent manner after poly IC stimulation. On the other hand, tryptanthrin did not affect the levels of p-STAT1 upon stimulation with lipopolysaccharide from Escherichia coli. Consistently, tryptanthrin suppressed poly IC-induced mRNA expression of interferon (IFN)-stimulated genes which are regulated by STAT1. Moreover, tryptanthrin decreased the protein level of phosphorylated-IFN regulatory factor 3 and the subsequent IFN-ß mRNA induction after poly IC stimulation. Tryptanthrin is a promising therapeutic agent for the aberrant activation of macrophages caused by viral infection.


Assuntos
Poli I-C , Receptor 3 Toll-Like , Anti-Inflamatórios , Humanos , Fator Regulador 3 de Interferon , Interferon beta/metabolismo , Interferon beta/farmacologia , Janus Quinases/metabolismo , Ligantes , Lipopolissacarídeos , Poli I-C/farmacologia , Quinazolinas , RNA Mensageiro , Fator de Transcrição STAT1/metabolismo , Células THP-1 , Acetato de Tetradecanoilforbol , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
5.
Inflammation ; 45(1): 343-355, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34523053

RESUMO

The activation of innate immune system is essential for the pathogenesis of nonalcoholic steatohepatitis (NASH). Among pattern recognition receptors, it is well-characterized that toll-like receptors (TLRs) are deeply involved in the development of NASH to reflect exposure of the liver to gut-driven endotoxins. In contrast, it has not been elucidated whether retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are similarly implicated in the disease progression. In the present study, we examined the expression of melanoma differentiation-associated antigen 5 (MDA5), known to be a member of RLRs, in a diet-induced murine model of NASH. The liver tissues were collected from C57BL/6 J mice at 1, 3, and 6 weeks after choline-deficient L-amino acid-defined high-fat diet (CDAHFD), and the expression of MDA5 was analyzed by western blotting, immunofluorescence (IF), and real-time quantitative PCR (qPCR). The results of western blotting showed that hepatic expression of MDA5 was increased at 3 and 6 weeks. In IF, MDA5-positive cells co-expressed F4/80 and CD11b, indicating they were activated macrophages, and these cells began to appear at 1 week after CDAHFD. The mRNA expression of MDA5 was significantly upregulated at 1 week. Additionally, we performed IF using liver biopsy specimens collected from 11 patients with nonalcoholic fatty liver diseases (NAFLD), and found that MDA5-positive macrophages were detected in eight out of eleven patients. In an in vitro study, MDA5 was induced upon stimulation with lipopolysaccharide in murine bone marrow-derived macrophages and THP-1 cells. Our findings suggest that MDA5 may be involved in the inflammation of NASH.


Assuntos
Helicase IFIH1 Induzida por Interferon/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Feminino , Humanos , Fígado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/imunologia , Células THP-1
6.
Neuroimmunomodulation ; 29(4): 349-358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34937041

RESUMO

INTRODUCTION: Invasion of viruses into the brain causes viral encephalitis, which can be fatal and causes permanent brain damage. The blood-brain barrier (BBB) protects the brain by excluding harmful substances and microbes. Brain microvascular endothelial cells are important components of the BBB; however, the mechanisms of antiviral reactions in these cells have not been fully elucidated. Zinc-finger antiviral protein (ZAP) is a molecule that restricts the infection of various viruses, and there are 2 major isoforms: ZAPL and ZAPS. Toll-like receptor 3 (TLR3), a pattern-recognition receptor against viral double-stranded RNA, is implicated in antiviral innate immune reactions. The aim of this study was to investigate the expression of ZAP in cultured hCMEC/D3 human brain microvascular endothelial cells treated with an authentic TLR3 agonist polyinosinic-polycytidylic acid (poly IC). METHODS: hCMEC/D3 cells were cultured and treated with poly IC. Expression of ZAPL and ZAPS mRNA was investigated using quantitative reverse transcription-polymerase chain reaction, and protein expression of these molecules was examined using western blotting. The role of nuclear factor-κB (NF-κB) was examined using the NF-κB inhibitor, SN50. The roles of interferon (IFN)-ß, IFN regulatory factor 3 (IRF3), tripartite motif protein 25 (TRIM25), and retinoic acid-inducible gene-I (RIG-I) in poly IC-induced ZAPS expression were examined using RNA interference. Propagation of Japanese encephalitis virus (JEV) was examined using a focus-forming assay. RESULTS: ZAPS mRNA and protein expression was upregulated by poly IC, whereas the change of ZAPL mRNA and protein levels was minimal. Knockdown of IRF3 or TRIM25 decreased the poly IC-induced upregulation of ZAPS, whereas knockdown of IFN-ß or RIG-I did not affect ZAPS upregulation. SN50 did not affect ZAPS expression. Knockdown of ZAP enhanced JEV propagation. CONCLUSION: ZAPL and ZAPS were expressed in hCMEC/D3 cells, and ZAPS expression was upregulated by poly IC. IRF3 and TRIM25 are involved in poly IC-induced upregulation of ZAPS. ZAP may contribute to antiviral reactions in brain microvascular endothelial cells and protect the brain from invading viruses such as JEV.


Assuntos
Antivirais , Cérebro , Vírus da Encefalite Japonesa (Espécie) , Células Endoteliais , Microvasos , Receptor 3 Toll-Like , Humanos , Antivirais/imunologia , Antivirais/farmacologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , NF-kappa B/metabolismo , Poli I-C/farmacologia , RNA Mensageiro/metabolismo , Receptor 3 Toll-Like/imunologia , Zinco , Microvasos/efeitos dos fármacos , Microvasos/imunologia , Cérebro/irrigação sanguínea , Cérebro/imunologia , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Vírus da Encefalite Japonesa (Espécie)/imunologia
7.
Gerodontology ; 39(2): 139-147, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33599317

RESUMO

OBJECTIVE: This paper describes the effect of Porphyromonas gingivalis (P gingivalis) lipopolysaccharide (LPS) on the expression of interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in cultured hCMEC/D3 human brain microvascular endothelial cells. BACKGROUND: P gingivalis is one of the important pathogens in periodontitis, and periodontitis is a risk factor for brain disorders including cerebrovascular diseases and Alzheimer's disease. However, the mechanisms underlying the pathogenesis of P gingivalis-mediated brain diseases are incompletely understood. Effects of P gingivalis LPS on brain endothelial cells are not known well. METHODS: The hCMEC/D3 human brain microvascular endothelial cells were cultured and treated with P gingivalis LPS. The expression of IL-6 and CCL2 mRNA and protein was examined using quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Effect of inhibitors of Toll-like receptor (TLR) 2, TLR4, nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) was also investigated. Phosphorylation of NF-κB p65, p38 MAPK and JNK was examined using Western blotting. RESULTS: P gingivalis LPS-induced mRNA and protein expression of IL-6 and CCL2 in hCMEC/D3 cells in a concentration-dependent manner at the concentration of 0.5-50 µg/mL. Maximal mRNA expression of IL-6 and CCL2 was found 2 and 4 hours after stimulation, respectively. Induction of IL-6 and CCL2 by P gingivalis LPS was almost completely inhibited by pretreatment of cells with TLR4 inhibitor but not by TLR2 inhibitor. Treatment of cells with P gingivalis LPS for up to 2 hours induced phosphorylation of NF-κB p65, p38 MAPK and JNK. IL-6 induction was decreased by pretreatment of cells with NF-κB inhibitor SN50 or p38 MAPK inhibitor SB203580, while CCL2 induction was reduced by SN50 or JNK inhibitor SP600125. CONCLUSIONS: IL-6 and CCL2 produced upon P gingivalis LPS stimulation may contribute to the inflammatory reactions in brain endothelial cells and subsequent neurological disorders such as cerebrovascular and Alzheimer's diseases.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Encéfalo/citologia , Quimiocina CCL2/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Porphyromonas gingivalis , Infecções por Bacteroidaceae/imunologia , Células Cultivadas , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Ligantes , NF-kappa B/metabolismo , Periodontite/complicações , RNA Mensageiro/genética , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Sci Food Agric ; 101(11): 4855-4861, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33543484

RESUMO

BACKGROUND: Propolis is a natural product collected by worker bees from a variety of plant species. As a type of propolis, Brazilian green propolis contains a large amount of artepillin C. Artepillin C is a cinnamic acid derivative and has been shown to have a wide variety of biological functions, including anti-inflammatory, antiviral and antitumor activities, in both cell culture and animal models. However, how propolis is digested and absorbed remains to be elucidated. Moreover, blood artepillin C levels after propolis intake have not been shown in human studies. RESULTS: A randomized, single-blind placebo-controlled study on the effect of Brazilian green propolis on serum artepillin C levels was conducted with healthy volunteers. The participants (n = 133) were randomly allocated in an approximately 2:1 ratio to two groups: propolis (n = 91) and placebo (n = 42). The participants took daily propolis or placebo, and blood tests were performed on day 0 (before propolis intake) and days 1, 3 and 7. Artepillin C was detected in serum in almost all individuals in the propolis groups. No serum artepillin C was detected in the placebo group. Serum artepillin C levels in the female group tended to be higher than those in the male group. In the female group, menstrual status was unrelated to serum artepillin C levels. CONCLUSION: These results suggested that propolis intake might be more effective for females than for males. © 2021 Society of Chemical Industry.


Assuntos
Fenilpropionatos/sangue , Própole/metabolismo , Adulto , Idoso , Animais , Anti-Inflamatórios/sangue , Abelhas , Brasil , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Própole/análise , Adulto Jovem
9.
Mol Immunol ; 129: 32-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260038

RESUMO

Tryptanthrin is a bioactive component of indigo plants such as Polygonum tinctrorium and known to have an anti-inflammatory activity. The aim of this study was to investigate the effects of tryptanthrin on Toll-like receptor 3 (TLR3)-mediated cytokine and chemokine expression in human umbilical vein endothelial cells (HUVEC). Herein, we found that tryptanthrin suppressed the expression of CXCL10 in HUVEC upon stimulation with a TLR3 ligand polyinosinic-polycytidylic acid (poly IC). Tryptanthrin did not inhibit poly IC-induced activation of interferon regulatory factor 3 (IRF3) or the mRNA expression of interferon (IFN)-ß, while it significantly suppressed the expression of RIG-I, MDA5, and classical IFN-stimulated genes (ISGs). Tryptanthrin attenuated the phosphorylation and nuclear translocation of STAT1 in HUVEC stimulated with not only poly IC but also recombinant IFN-ß. These results suggested that tryptanthrin inhibited poly IC-induced expression of CXCL10 and ISGs via suppressing the activation of STAT1 in HUVEC. Our findings indicate that tryptanthrin may be useful for regulating TLR3-mediated vascular inflammation.


Assuntos
Quimiocina CXCL10/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Quinazolinas/farmacologia , RNA de Cadeia Dupla/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Células Cultivadas , Proteína DEAD-box 58/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta/metabolismo , Poli I-C/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo
10.
Kidney Blood Press Res ; 46(1): 74-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33326977

RESUMO

INTRODUCTION: Various viruses including a novel coronavirus (SARS-CoV-2) can infect the kidney. When viruses invade the glomeruli from the bloodstream, glomerular endothelial cells (GECs) initiate the innate immune reactions. We investigated the expression of interferon (IFN)-induced protein with tetratricopeptide repeats (IFIT) 1/2/3, antiviral molecules, in human GECs treated with a toll-like receptor (TLR) 3 agonist. Role of IFIT1/2/3 in the expression of C-X-C motif chemokine ligand 10 (CXCL10) was also examined. METHODS: Human GECs were cultured and stimulated with polyinosinic-polycytidylic acid (poly IC), a synthetic TLR3 agonist. Real-time qPCR, Western blotting, and ELISA were used to examine the expression of IFIT1/2/3, IFN-ß, and CXCL10. RNA interference against IFN-ß or IFIT1/2/3 was also performed. RESULTS: Expression of IFIT1/2/3 and CXCL10 was induced by poly IC in GECs. The inductions were inhibited by RNA interfering of IFN-ß. Knockdown of IFIT1/2/3 decreased the CXCL10 expression. Knockdown of IFIT3 decreased the expression of IFIT1 and IFIT2 proteins. CONCLUSION: IFIT1/2/3 and CXCL10 were induced by poly IC via IFN-ß in GECs. IFIT1/2/3 may increase the expression of CXCL10 which induces lymphocyte chemotaxis and may inhibit the replication of infected viruses. These molecules may play a role in GEC innate immune reactions in response to viruses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Reguladoras de Apoptose/biossíntese , Quimiocina CXCL10/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Glomérulos Renais/metabolismo , Proteínas de Ligação a RNA/biossíntese , Receptor 3 Toll-Like/agonistas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Quimiocina CXCL10/genética , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glomérulos Renais/citologia , Glomérulos Renais/efeitos dos fármacos , Poli I-C/farmacologia , Proteínas de Ligação a RNA/genética , Receptor 3 Toll-Like/metabolismo
11.
Neuroimmunomodulation ; 27(1): 38-47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294654

RESUMO

OBJECTIVE: Brain microvascular endothelial cells are integral components of the blood-brain barrier and play a role in protecting the brain from invading microbes. CXC motif chemokine ligand 1 (CXCL1) induces the chemotaxis of neutrophils, and neutrophils are important in host defense in the brain. However, dysregulated neutrophil infiltration leads to brain diseases. Toll-like receptor 3 (TLR3) is a pattern recognition receptor that recognizes viral double-stranded RNA (dsRNA). The aim of this study was to investigate the effect of an TLR3 agonist on the expression of CXCL1 in brain vascular endothelial cells. METHODS: hCMEC/D3 human cerebral microvascular endothelial cells were cultured and treated with polyinosinic-polycytidylic acid (poly IC), a potent synthetic dsRNA agonist for TLR3. The production of CXCL1 mRNA and protein was assessed by real-time RT-PCR and ELISA. The expression of CXCL1 was compared with that of CXCL8. The effect of pretreatment of cells with a NF-κB inhibitor (SN50), a p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580), a c-Jun N-terminal kinase (JNK) inhibitor (SP600125), an interferon (IFN) regulatory factor 3 inhibitor (MRT67307), and an anti-type I IFN-neutralizing antibody mixture was examined. Phosphorylation of p38 was examined using Western blotting. RESULTS: Treating cultured hCMEC/D3 human cells with poly IC induced the expression of CXCL1 as well as another chemokine CXCL8. Pretreatment of cells with SN50, SB203580, and SP600125 decreased the induction of CXCL1 by poly IC. However, it was not affected by MRT67307 or by an anti-type I IFN-neutralizing antibody mixture. Pretreatment of cells with SN50 decreased the poly IC-induced phosphorylation of p38. CONCLUSIONS: Poly IC induces the expression of CXCL1 in hCMEC/D3 cells. NF-κB, p38 MAPK, and JNK are involved in this reaction. There is a cross-talk between NF-κB and p38, and NF-κB partially regulates phosphorylation of p38. CXCL1 produced by brain microvascular endothelial cells may contribute to the brain's defense against viral infection and various neurological diseases associated with neutrophil accumulation.


Assuntos
Barreira Hematoencefálica/metabolismo , Quimiocina CXCL1/biossíntese , Células Endoteliais/metabolismo , Infiltração de Neutrófilos/fisiologia , Poli I-C/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Transdução de Sinais/fisiologia
12.
J Neuroimmunol ; 337: 577047, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31520792

RESUMO

The molecular mechanisms of antiviral innate immune reactions in brain microvascular endothelial cells remain unclear. Interferon (IFN)-induced transmembrane protein 1 (IFITM1) and Myxovirus resistance protein 1 (MX1), the members of IFN-stimulated genes, are known as antiviral molecules. IFITM1 inhibits virus entry into host cell cytoplasm, whereas MX1 antagonizes virus replication. Here we observed that IFITM1 and MX1, and a proinflammatory cytokine IL-6 expression was induced by polyinosinic-polycytidylic acid (poly IC) in hCMEC/D3 human brain microvascular endothelial cells. Poly IC-induced IFITM1 and MX1 expression were decreased by NF-κB inhibitor SN50, IFN regulatory factor 3 inhibitor MRT67307 and human type I IFN neutralizing antibody mixture. These findings suggest that IFITM1 and MX1 may help protect the brain from viruses.


Assuntos
Antígenos de Diferenciação/biossíntese , Células Endoteliais/metabolismo , Microvasos/metabolismo , Proteínas de Resistência a Myxovirus/biossíntese , Poli I-C/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Microvasos/citologia , Microvasos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...